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1.    PROBLEM STATEMENT 

In this project we are investigating the properties of rank 3 groups of degree K
2
 +1.We intend to shed more light on the 

following groups: 

i). The dihedral group D5 of order 10 with a representation of degree 5, 

ii). The alternating group A5 and the symmetric group S5 on 5 points acting on the set of unordered pairs of distinct points 

provide examples of degree 10, 

We deal with the following problems: 

i). Finding the subdegrees of these three groups. 

ii). Finding the suborbits and constructing suborbital graphs associated with the action and discussing the properties of 

these graphs. 

iii). Finding the intersection numbers associated with each non- trivial suborbit . 

iv). Finding the intersection matrix associated with each non –trivial suborbit and discussing the properties of these 

matrices. 

2.   OBJECTIVES 

Our main aim is to study the ranks, suborbits, subdegrees , suborbital graphs ,intersection matrices  corresponding to the 

action of the symmetric group S5  and the alternating group A5  on the set of unordered pairs from the set 

X={1,2,3,4,5}.we also study  the action of the dihedral group D5  on the set X ={ 1,2,3,4,5 }. 
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We intend to construct the suborbital graphs associated with the action and discuss their properties.  And also compute the 

intersection numbers to come up with the intersection matrices. 

3.   INTRODUCTION  

We investigate some properties of the action of D5 on X={ 1,2,3,4,5 }. It is presented in three sections: 

Section 1 deals with the subdegrees of D5 acting on X  

Section 2 deals with the suborbits of D5 and the corresponding suborbital graphs. 

Finally  in section 3 , we find the intersection numbers and the intersection matrices associated with each non –trivial 

suborbit. 

Subdegrees of G=D5 on X={ 1,2,3,4,5 } 

Let G act on the set  X={1,2,3,4,5}. 

Lemma 1 

G acts transitively on X={1,2,3,4,5} 

Proof 

Using the orbit- stabilizer theorem (Theorem 1.1.3.10) , we need to show that the length of the orbit of a point say  1 is 

five same as the number of points in X .This implies that that the action of G on X has only one orbit . 

Taking 1 in X,      1 1, 34 25GStab   

Hence   1 2GStab   

Applying the orbit –stabilizer theorem, we get  

   1 : 1G GOrbit G Stab  

 

10
5

21G

G

Stab
    

Thus the orbit of 1 X  is the whole of X .Therefore G acts transitively on X. 

Lemma 2 

The number of orbits of G1 on X is 3. 

Proof  

To prove this we apply the Cauchy – Frobenius lemma  (Theorem 1.1.3.8) .We show that the number of orbits of the 

stabilizer of 1 in D5 is 3. 

      11 1, 25 34GStab G   

Hence 

   
1

1 1GOrb   

   
1

2 2,5GOrb   

   
1

3 3,4GOrb   
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Thus the number of orbits of G1 on X is 3 , implying that the rank of G on X is 3.  

The three orbits of G1 acting on X determined above are :  

   
10 1 1GOrb   .  The trivial orbit 

   
11 2 2,5GOrb   ,  The orbit containing 2 and 5 

   
12 3 3,4GOrb   ,  The orbit containing 3 and 4 

Therefore, the subdegrees of D5 on X are  1 , 2  and  2 . 

Suborbital graphs of G = D5 

From the previous section , the suborbits of G are : 

   
10 1 1GOrb   . 

   
11 2 2,5GOrb   , 

   
12 3 3,4GOrb   ,  

Now 

X X  = {(1 1) , (12) , (13) , (14) , (15) , (21) , (22) , (23), (24), (25) , (31) (32), (33) , (34) ,  (35) , (41) ,  (42) , (43),   

(44),   (45) , (51) (52) , (53),  (54) , (55)} . 

By lemma 1.1.5.4 , we find that the suborbitals corresponding to the suborbits 
0 , 1  and 2 are: 

O0 (1,1) = { (1,1) , (2,2) , (3,3) , (4,4) , (5,5)  } 

O1(1,2) = {(1,2) , (2,3),  (3,4) , (4,5) , (5,1) , (1,5) , (3,2), (5,4) , (2,1) ,(4,3)} 

O2(1,3) = {(1,3) , (2,4), (3,5) , (4,1) , (5,2) , (1,4) , (3,1) , (5,3), (2,5) , (4,2)} 

From these suborbitals, we find the suborbital graphs. The suborbital graph corresponding to O0 is the null graph. 

We now consider the suborbital graphs corresponding to the suborbitals O1 and O2 respectively. 

Since the order of D5 is 10 which is even, by Theorem 1.1.5.6 [Wielandt , 1964 ,section 16.5] 1  and 2   are self-paired 

. Hence their corresponding suborbital graphs are undirected. 

We then construct the suborbital graphs 1  and 2  in figure 5.2.1 and Figure 5.2.2 respectively. 

 The suborbital graph corresponding to the suborbit 1  of G on X  

 

1 2 

5 3 

4 
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1  is regular of degree degree 2.  It is also connected 

 The suborbital graph 2  corresponding to the 2  of G on X.. 

 

2  is regular of degree 2 and is connected. 

3. Intersection matrices associated with the action of G=D5 on X 

In this section we compute the intersection numbers and the corresponding intersection matrices associated with each 

non-trivial suborbit  1   and 2 . 

By Definition 1.1.6.1, given an arrangement of the Ga-orbits , the Gb–orbits are arranged such that if bX and g(a) = b 

then, 

       l i lg a g b b      

Intersection matrix corresponding to  1 1  

From a general discussion of intersection numbers and intersection matrices in section 1.1.6. 

Now taking a = 1 in X and G1-orbits arranged as follows,   

   0 1 1  . 

   1 1 2,5  , 

   2 1 3,4  ,  

We arrange the Gb- orbits as follows : 

   0 2 2  . 

   1 2 1,3  , 

   2 2 4,5  ,  

1 

2 

3 

5 

4 



  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 6, Issue 2, pp: (15-22), Month: May - August 2019, Available at: www.noveltyjournals.com 

 

Page | 19 
Novelty Journals 

 

   0 3 3  . 

   1 3 1,5  , 

   2 3 2,4  ,  

From definition 1.1.6.1, the intersection numbers relative to the suborbit  1 1 are defined by 

       1 , 1
l

ij l i jb b    I , 

Hence we find the intersection numbers relative to  1 1 as follows  

     1

00 1 01 1 0    I  

     1

10 1 11 1 2    I  

     1

20 1 21 1 0    I  

     1

01 1 02 1 1    I  

     1

11 1 12 1 0    I  

     1

21 1 22 1 1    I  

     1

02 1 03 1 1    I  

     1

12 1 13 1 1    I  

     1

22 1 23 1 0    I  

By definition 1.1.6.2 the intersection matrix 
  1

1
,

ij
i j

M  , associated with  1 1, 2  where 
 1

ij  are the intersection 

numbers relative to  1 1  is obtained as follows; 

     

     

     

1 1 1

00 01 02

1 1 1

1 10 11 12

1 1 1

20 21 22

M

  

  

  

 
 

  
 
  

 

0 1 1

2 0 1

0 1 0

 
 


 
  

 

Intersection matrix corresponding to  2 1   

From definition 1.1.6.1, the intersection numbers relative to the suborbit  2 1 are defined by 

       2

2 1 , 1ij i jb b    I , 

We therefore find the intersection numbers relative to  2 1 as follows  
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     2

00 2 01 1 0    I  

     2

10 2 11 1 0    I  

     2

20 2 21 1 2    I  

     2

01 2 02 1 0    I  

     2

11 2 12 1 1    I  

     2

21 2 22 1 1    I  

     2

02 2 03 1 0    I  

     2

12 2 13 1 1    I  

     2

22 2 23 1 1    I  

By definition 1.1.6.2 the intersection matrix 
  2

2
,

ij
i j

M  , associated with  2 1  where 
 2

ij  are the intersection 

numbers relative to  2 1  is obtained as follows; 

     

     

     

2 2 2

00 01 02

2 2 2

2 10 11 12

2 2 2

20 21 22

M

  

  

  

 
 

  
 
  

 

0 0 0

0 1 1

2 1 1

 
 


 
  

 

Properties of the intersection matrices associated with  2 1  and  2 1   

By computation of the intersection matrices we are able to come up with the following properties. 

i). The column sum of the intersection matrix associated with i  is equal to the degree (valency) of the suborbital graph 

corresponding to the same suborbit i  , which is also the length of the suborbit. 

We can see that the column sum of M1 is 2 equal to the degree of 1 .Also the column sum of M2 is 2 equal to the degree 

of 2 . 

ii). 1M  and 2M  are square matrices . 

iii). The order of 1M  and 2M  is 3 3 since the rank of D5 is 3. 

4.   CONCLUSION 

In this project we investigated some properties of the action of D5 on X = { 1,2,3,4,5 } , we showed that D5 acts 

transitively on X. We found the rank of D5 when it acts on X to be 3 , same as that obtained  by Higman (1964) .And that 

the subdegrees of D5 are 1 , 2 and 2 . We also constructed the suborbital graphs and found out that suborbital graphs 1  
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and 2  corresponding to the non-trivial suborbits of D5 are regular and undirected.  We computed the intersection 

numbers and intersection matrices associated with each non – trivial suborbit 1  and 2 . We found out that the 

intersection matrices M1 and M2 are square matrices and that the column sum of M1 is 2 equal to the degree of 1  and the 

column sum of M2 is also 2 equal to the degree of 2  . 
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